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Abstract: In this paper a method for simulating river headwater flows in Australia’s southern Murray-Darling Basin is

described. This work was conducted for the purpose of analysing competing demands for water in the Basin. The

methodology described is largely driven by two issues. Firstly, the spatial relationships between river headwaters need

to be captured in conjunction with any temporal correlations that may exist (adding to the complexity is the fact that

some river headwaters have no flows for coasecutive months). The second issue requires selecting a robust

methodology which can be used within a large scale simulation framework.

1. INTRODUCTION

The issue of managing competing demands for waler
resources in the southern Murray Darling Basin of
Australia is one that requires a balance of water use for
electricity generation, downstream irrigation and the
environment. To objectively examine the resource use
trade-offs inherent in this system requires a modelling
approach cast in a system-wide coniext; integrating
hydrological, biophysical and economic relationships.
The purpose of this paper is to discuss a method of
statistical modelling for the hydrological component
within 2 model of the southern Murray Darling Basin

(Scoccimarro, Beare and Brennan 1997).

Synthesised hydrological flows are used to generate

synthetic realisations using numerical techniques

{McMahon, Pretto and Chiew 1996; Hipel and McLeod

1994). Synthesised flows are often used within a
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simulation framework to examine the operation of water
storages and the flow on effects on the competing
demands for water (Thompstone, Hipel and McLeod
1987).

Risk is a central aspect of water management strategies
(Musser and Tew 1984), Hence, the ability to generate
stochastic river flows which reflect the likelihood and
impact of critical low and high flow conditions over an
extended time frame, is important in evaluating
alternative management options (Hall et al 1968). At the
catchment scale, climatic events and the geomorphology
of the region may give rise to complex spatial and
temporal relationships and affect critical flow patterns,
The objective of this analysis is to develop a framework
which is robust in simulation, generating results within

observed bounds and able to adeguately sample from



the tails of the river flow distributions with minimum
bias. These are often conflicting objectives in statistical
analysis and present a number of interesting problems in

this application.

2. THE LARGER MODEL

The model developed by the Australian Bureau of
Agricultural Resource Eeonomics (ABARE) examines
the links between water use in the southern Murray
Darling Basin. The modelling system, constructed using
Extend™ software (Imagine That Inc. 1995), consists of
a set of modules which can be linked to construct a
network, The modules can be categorised into five

broad types:

= Physical modules represent reaches of the river
system and infrastructure such as dams, storages and
electrical generation facilities. These modules track
the characteristics of the water flows and, for
example, the relationships between storage volumes

and electricity generation capacity.

e Mansgement modules represent the institutional
arrangements which govern the allocation of water,
such as the allocation of water by the Murray

Darling Basin Commission between the states.

¢ Eeconomic modules represent the individual or
coilective actions of commercial water users. These
modules generate water demands through a process
which optimises the financial return to, for example,

a farm or electricity generator.

* Statistical modules generate exogenous system
wide data, such as headwater flows or electricity

foads.

2 Market modules represent the interaction of

economic participants within a market, such as a

1666

spot electricity market or a market for trading

temporary water entitlements.

The modules are linked into a user specified network of
physical, managerial and economic relationships

through a graphical computer interface.

3. DATA

The objective of the analysis is to estimate a joint
distribution function for 25 river headwaters which
encompass the water sources of the Snowy Mountains,
the Victorian and New South Wales sources to the
Murray river and inflow sources of the Murrumbidges
river. The 87 years of data for each headwater provide
monthly records of flows from 1906 to 1992, Al
monthly flow distributions are right skewed and highly
variable (see figwe 1). The majority of the river
headwaters downstream of the Snowy scheme have
highest average monthly flows in August while
headwaters associated more directly with the scheme,
and are more influenced by snowmelt, have higher flows

in September and October.
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Figure 1. Monthly coefficient of variation for two

selected headwaters

A preliminary exploratory analysis indicated there were
significant spatial and serial comrelation between the
headwater flows. In addition, there were a significant
number of periods in which zere flows were recorded in

several headwaters downstream of the Snowy scheme. A



general approach to estimation of a non-negative
distribution with zero observationg is to make use of
conditional probabilities of zero and positive flow. The
existence of spatial correlations makes the problem
more difficult in thai the number of conditional
probabilities and distributions to be estimated increases
combinatorially. Serial corretations complicate the
problem substantiaily further. The author is unaware of
published work in which these problems have been
collectively addressed.

In this analysis, a non-conditional estimation approach
is used to estimate the joint headwater flow distribution.
Daia is then simulated from the estimated joint
distribution function under alternative fruncation and
windsorisation rules. The bias in the simulated data is

then exarnined.

4, METHODOLOGY

The model for water flow [ at time ! may be writien
as:

(1) Jrg =t T Ormbrss

where fI is the average monthly flow and G 15 the

standard deviation of the monthly flow in month 77, for

each river headwater ¥ and £ is the residual.

To remove any linear dependencies or spatial

relationships in the river headwaters, principal

component analysis was used:
(2)

where the b’Sare the coefficients for the principal

P o=b, & +b,8+.4b, &,

component . Approximately 77 per cent of the
standardised variance is explained by the first three
principal components with subsequent components
contributing less than 5 per cent. While the first
eigenvector showed equal loadings on all the
headwaters, the second component had high positive

loadings on headwaters downstream of the Snowy
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Mountains catchment and high negative loadings on
headwaters contained within the catchment of the

Snowy Mountains.

Each principal component series was found to be
stationary. The partial autocorrelations of the principal
component series suggested using a first order
autoregressive model, AR(1) process lo capiue the
temporal corrslations:
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where {r'm is the residual series which was disiributed

normally. Lag structures in the majority of the residual
series were found to contain white noise. AR modeis of
higher order showed an increase in the Akaike
information  criteria, that is, a possible over
parameterisation of the model. The first lag showed the
most dominant autocorrelation effect in all the series,
Smaller effects that were different for each principal
component and any temporal cross-correlations between
each principal component series, were not modelled.
The common AR structure re-introduced a small
spatial correlation between ihe residuals. However, the
level of comrelation was low and no corrective action

was taken.

The Shapiro-Wilk test (see Shapiro and Wilk 1965}
indicated that the residuals were not normal. Most were
highly kurtotic and some were also skewed. Distribution
functions were estimated for these residuals using a
mixture of two normal distributions {see Johnson, Kotz
and Balakrishnan 1994). To estimate the parameters of
this nonlincar model, the alogorithm employed uses
nonlinear optimisation which minimises the sum of the
squared deviations between the predicted and fitted
cumnlative distributions (see SAS/STAT User’s Guide
1990). The skewness associated with some of the
distributions was captured by varying both the means
and variances of the component normal distributions.

For distributions with little or no skewness the means



were fixed and standard deviations allowed to vary. The

form of this probability density function is

2 | _ }2
@ Jobma) o -HEELY

1

where £, is the mean and O ; is the standard deviation of

the normal distribution i, and @, are the weights where

Eﬁ?f =1.
=1

The results of fitting the mixture of normal distributions
to the residuals of the first and third principal
component are shown in figures 2 and 3. The residuals
of the component are plotted against the cumulative
predicted value and compared to the original cumulative
distribution. Residuals of the first and third principal
components were positively skewed and leptokurtic
{kurtosis of 4.44 and 9.56 respectively), The fit of the
tirst principal component where the mean was not
altowed to vary indicales a reasonably good fit of the
mixture of distribution (figure 2). However, the third
principal component, where the mean was allowed to
vary, shows a significant improvement on the model fit
with all sections of the distribution estimated well

{figure 3).
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Figure 2. Fit of the mixture of normal distributions:
first principal compenent
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Figure 3. Fit of the mixture of normal distributions:
third principal component

5. IMPLEMENTATION AND RESULTS

Each stage in the methodology described in the previous
section was reconstructed in the headwater flow module
of the southern Murray Darling Basin model. Successive

long run simulations based on this methodology

produced distributions of headwater flow { [

r.n

) where

~

Mo =H, ,and G =0, . However, fr,m was

not found to fall within the observed hounds.

In dealing with this issue, two methods were employed

separately. The first scenario involved windsorising

-

J s s follows:

(5) i fo,<=p,, then f, =p,, and

i fom=> Py then L =p o,
where p,jand P, o, were respectively the first and
ninety ninth percentiles of the observed distribution.

The second method involved truncating f,  so that if

~

Jom<=p,, orif Jim => P.go then the process

-~

of  predicting  f, was  rtepeated  until

-~

pr,l <= fr,m <= pr,99'

Similar effects of applying each method to each
headwater flow were observed across all headwaters, As

an example, results of the 1000 years of simulated flows



for eleven headwaters are summarised in figure 4. Both 100 - 160

Jarge and small headwaters are shown including those

headwaters with consecutive low flows (Billabong 50 50

headwater). Generalty, both methods show an over-
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6, CONCLUSION

The method described in this paper was designed to be
robust in simulating headwater flows within a model of
the southern Murray Darling Basin. The objective was
to estimate a joint probability function that when used
within a simulation framework, provided adequate
sampling from the tails of the distribution to ensure the
occurrence and magnitude of critical periods was
maintained, The data used in this analysis was spatially
and temporally correlated with some headwaters
containing consecutive months of zero flows. As a result
of these characteristics, the general approach to the
estimation of a non-negative distribution was made
more complex. The spatial and serial correlation caused
the number of conditional probabilities to increase
combinatorially. As a result, headwater flows are
estimated from non-conditional joint distributions under
two alternatives; windsorisation and truncation. The two
methods were found to consistently underestimate the
upper tail of the disiribution. However, as 2 model for
synthesised hydrological flows within a larger
framework, the windsorisation method was found to be
a more robust method predicting the bulk of the

distribution reasonably well.
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